The Neuroscience of Emotion: A New Synthesis – Ralph Adolphs and David J. Anderson.

Emotions, while ubiquitous across species and one of the most common topics of conversation, are still, it seems, misunderstood.

We know a lot less than we think we know. This is good news for scientists: there is work to be done, interesting and important work.

We aim to provide a fresh look at emotion from the perspective of biology, a perspective that can provide a foundation for the field from which to move forward in a productive, cross-disciplinary fashion.

We believe that emotions are states of the brain, and that the mechanisms that generate emotions can be investigated with neurobiology.

We believe it is critical to distinguish between emotions as internal functional states, and conscious experiences of emotions, often called “feelings”. Emotions and feelings are not the same thing, although they are of course closely related. Most of this book is about emotions, not about feelings.

A science of emotion needs to examine most of our initial intuitions about emotions, sharpen vague questions so that they can be experimentally investigated, and confront both empirical and conceptual problems.

Emotions, while ubiquitous across species and one of the most common topics of conversation, are still, it seems, misunderstood.

Do emotions have biological roots and, if so, where? And how do physiological factors influence how emotions are felt, expressed, and understood?

For Ralph Adolphs and David J. Anderson, developing a comprehensive science of emotions began with trying to create a framework that is scientifically rigorous, inclusive, cumulative, and yet provides clear operationalization of the relevant concepts of emotions.

Their new book, The Neuroscience of Emotion: A New Synthesis, offers a new way to understand emotions, one that will leave you thinking differently about how emotions work and why they are so important.

“If you are most people, you feel convinced that, because you have emotions, you know a lot about what emotions are, and how they work. We believe you are almost certainly wrong,” write Adolphs and Anderson.

We wrongly assume many things about emotion, and gaining insight into emotion means moving past these assumptions. For one thing, there are many more than four primary emotions, and they are not irreducible.

The authors address this, saying, “There is scant evidence that “joy”, “fear”, or “anger” are irreducible and do not share component parts. Equally plausible is an alternative view in which each of these emotions is made up of a collections of components, or building blocks, some of which are shared by other emotions.”

What neuroscience offers is a way to understand what underlying mechanisms generate emotions, and further, to explain them through their underlying mechanisms.

One example is the feeling of disgust, which the authors explain evolved to help animals avoid poisonous or contaminated food.

Emotions, however, go much further than the reflex-like reaction to a noxious food. Often overlapping with other states, such as motivation, arousal, and drive, emotions serve as adaptive functional states that lie somewhere between reflexes, volitional, and deliberate action.

One way to understand emotions more clearly is to separate them into two classes: building blocks of emotions and features of emotions.

“All emotion states have most of the building blocks, and we can find precursors to emotions states in simpler organisms that already show many of the properties of building blocks. Features, on the other hand, are more elaborated, derived, and variable properties of emotions, and not all emotions have them,” write Adolph and A Anderson.

Emotion states can also be related to one another and integrate information from multiple sources over time. One example is what is known as the “drift-diffusion” model, which describes how we reach a decision threshold depending on how rapidly sensory information is accumulated.

Emotions, however, are not generalizable. The authors write, “Given the highly varied and multimodal sensory inputs that can carry information relevant to a particular emotion (for example, predictors of a threat that could induce a state of fear) there is no simple formula that determines which stimuli cause an emotion, let alone which stimuli cause one type of emotion rather than another.”

Similarly, studying emotions means distinguishing between emotion states, called internal brain states, and feelings, the conscious and subjective experience of those emotions.

While we might not agree on whether animals have feelings, we can study their emotion states to help us better understand the function of our own emotions.

The authors write, “Darwin believed, and we agree, that emotional expression (whether produced in the face, the body, or both) was an evolutionary conserved function, and that its particular manifestations in different species provide insights to how emotions evolved.”

Asking questions like: Do flies engage in sex because it is rewarding or reinforcing to them, or simply because they are genetically programmed to do it?, will help us better understand the internal states of motivation, arousal, and drive, as well as our own subjective feelings of love, lust, anger, and rage.

Separating emotion states from the conscious experience of feelings also helps us understand how sensory stimuli can go undetected and still induce an emotion. One example the authors give is fear conditioning in humans, where conditioned autonomic responses emerge which is a form of emotional learning.

Shedding light on the often misunderstood topic of emotions, The Neuroscience of Emotion: A New Synthesis offers a truly scientific approach to understanding emotions, one that is as thought provoking as it is comprehensive.

Claire Nana, Psych Central

The Neuroscience of Emotion: A New Synthesis

Ralph Adolphs and David J. Anderson.


Emotions are one of the most apparent and important aspects of our lives, yet have remained one of the most enigmatic to explain scientifically. On the one hand, nothing seems more obvious than that we and many other animals have emotions: we talk about emotions all the time, and they feature prominently in our literature, films, and other arts. On the other hand, the scientihc study of emotions is a piecemeal and confused discipline, with some views advocating that we get rid of the word emotion altogether.

If you ask scientists, even those in the field, what they mean by an emotion, you will either get no explanation at all or else several quite discrepant ones that seem to be referring to quite different phenomena. We aim to provide a fresh look at emotion from the perspective of biology, a perspective that can provide a foundation for the field from which to move forward in a productive, cross-disciplinary fashion.

Emotions and feelings have been the topic of countless books, some of them detailed technical books (often a collection of chapters from many different authors), and most of them popular books focused on the psychology of emotion. Ours is none of these. It is not intended as a textbook, a popular book, or a monograph of any sort. Instead, our aim in writing this book was to take stock of the field, from a fairly high level perspective, to provide a survey of the neurobiology of emotion, and, most importantly, to provide both a conceptual framework and ideas for approaches that could be used by a neuroscience of emotion going forward.

Our intended audience is any educated reader, but our core audience is students and researchers who are contemplating going into the field of affective neuroscience, or who are already in the field and wondering what path their research should take. We also hope that at least a good part of the book would be accessible and interesting to readers who do not have a strong scientific background. Indeed, it is entirely possible to glean most of the conceptual framework just from reading chapters 1-4 and chapter 11, and skipping some of the more detailed chapters in the middle.

We decided to eschew detailed citations of the papers behind every point and study that we describe, instead choosing to give a more broadly accessible treatment that only cites the most important key papers or reviews (which, in turn, will provide interested readers with a longer list of further references).

Our book differs from most other books on emotion in scope and organization. One of us (Adolphs) investigates emotion in humans; the other (Anderson) investigates emotion in mice and flies. This breadth of different backgrounds, and the presentation of the different species studied, is a critical ingredient of this book, since it forced us to abstract from many details in order to uncover fundamental principles that would cut across different approaches and different species. It also meant that neither one of us is in fact the authority for all of the book: notwithstanding extensive discussions, comments, and cowriting, there are parts of the book that have only one of us as the principal author and expert. Indeed, there are parts of the book on which we continue to disagree!

We do not intend to provide a comprehensive new theory of emotion. Indeed, we don’t feel that we provide any kind of theory of emotion at all. Instead, we describe ways that scientists should think about emotion, and ways that they should use the word emotion consistently in their science, in order to forge a neuroscience of emotion with the maximal long-lasting impact. Our intent was to provide a framework for investigating emotions that would be applicable to those working in animal models; those working with human subjects; those using functional magnetic resonance imaging (fMRI), electrophysiology, optogenetics, or clinical populations. We even hope that what we have written here would be useful to engineers who are trying to figure out how to build robots that have emotions. In our view, a science of emotion needs to meet two criteria: it should be comprehensive and it should be cumulative.

Forging a comprehensive science means that the encapsulation often evident in papers, journals, and meetings on emotion needs to be overcome. Scientists studying emotion in rats and in humans need to be able to speak to one another, rather than build walls that isolate their research enterprise from the rest. A comprehensive science of emotion also needs to connect with all domains of science that are relevant to emotion: it needs to connect with psychology and with neurobiology. Doing this requires a consistent terminology that makes principled distinctions, and that allows clear operationalization of the different concepts that a science of emotion will use.

We spend some time in the first three chapters articulating such distinctions and outlining the features of emotion that a scientist would look for, whether she is studying emotion in humans, rodents, or flies. This approach necessitates some terminological commitments, and we explain these in the early chapters. We also return to them when we compare our view to some of the many other theories of emotion out there, in chapter 10.

A high-quality science of emotion requires not only clear terminology and operationalization of concepts, it also requires sensitive measures, statistically robust analysis tools, and creative hypotheses. The later chapters take up these issues in the context of a survey of ongoing neuroscience studies. Taken together, these ingredients would enable a cumulative science of emotion, a science in which current studies can build on prior work, and in which the accumulation of many studies over time allows comparisons and contrasts, as well as syntheses and formal meta-analyses. We are currently a long way from having achieved this. Indeed, most meta-analyses of emotion are either extremely narrow, or else hopelessly inconclusive because they mix studies with very different standards or terms.

There is no question in our minds that emotions are real phenomena that need to be explained. We believe that, in addition to humans, many other animals have emotions, both of the authors of this book have cats as pets, and we are convinced that they have emotions. However, intuition and belief are not the same as scientific knowledge, and an important goal of the book is to suggest objective criteria to apply in searching for cases of emotional expression in animals.

Finally, we also believe that emotions are states of the brain, and that the mechanisms that generate emotions can be investigated with neurobiology. Our book is based on these underlying assumptions; we summarize them again in the very last chapter.


What Don’t We Know about Emotions?

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.” Ralph J. Boorstin

If you are like most people, you feel convinced that, because you have emotions, you know a lot about what emotions are, and how they work. We believe you are almost certainly wrong. In the Field of emotion, as in most fields, familiarity is not the same as expertise. After all, you have a heart, but that doesn’t make you an expert on hearts. You leave that to your cardiologist.

Yet the science of emotion is fraught with this problem: everyone seems to think they know what an emotion is. This is because we all have strong, and typically unjustified, intuitive beliefs about emotions. For instance, some people are absolutely certain that animals have emotions; others are absolutely certain that animals could not have emotions. Neither camp can usually give you convincing reasons for their beliefs, but they stick to them nonetheless.

We cannot emphasize enough the pervasive grip that our commonsense view of emotions has on how we (that is, researchers in the field) frame our scientific questions. We need to free ourselves of our commonsense assumptions, or at least question all of them, if we want to ask the right questions in the first place. This chapter introduces the topics of this book through this important premise and concludes by listing what we ideally would want from a mature science of emotion, and what entries in this list we will tackle in this book.

We wrote this book for two overarching aims. The first aim is to motivate the topic of emotion, to note that it is of great interest not only to laypeople but also to many scientific fields of study, and that it is a very important topic as well. At the same time, we emphasize that we currently know remarkably little about it yet, in particular, we know a lot less than we think we know. This is good news for scientists: there is work to be done, interesting and important work.

The second aim is to provide a summary of what we do know and to sketch a framework within which to understand those empirical findings and within which to formulate new questions for the future. This process is in practice very piecemeal: we need to have a little bit of data even to begin thinking about what emotions are, but then we discover problems with the way prior experiments were done and interpreted.

In the dialectic of actual scientific investigation, both conceptual framework and empirical discovery are continuously revised, and inform each other. However, we have not written our book this way. Instead, we begin with some of the foundations for a science of emotion (chapter 2), what kinds of ontological and epistemological commitments it requires, what kind of structure an explanation takes, and then work our way toward a list of features or properties of emotions (chapter 3), which then finally are the things we look for, and discover, through empirical research (chapters 4-9). We return to the foundations and the questions again in chapters 10 and 11 by contrasting our views with those of others, and by suggesting some experiments for the future.

Emotions According to Inside Out

What is it about emotions that we would like to understand? And what do we think we understand, but in fact don’t (or are mistaken about)? Because emotions are ubiquitous in our lives, and integral to our experience of the world, it is dangerously easy to come up with simplistic views that do not stand up to closer scrutiny, and instead impede scientific progress because they create “the illusion of knowledge.”

The film Inside Out, which won the 2016 Academy Award for Best Animated Feature, as well as a Golden Globe, provides a good example of many common but incorrect assumptions about emotion. As you watch the film, you get a fanciful view of how emotions are supposed to work inside a twelve year old girl, how those emotions are supposed to be integrated with memory and personality, and how they are supposed to be expressed as behavior.

If Inside Out’s view of emotion were right, you would be tempted to conclude that we understand an enormous amount about how emotions work, and, more generally, about how the mind and brain work. But Inside Out’s view of how emotions work is wrong. In examining what, exactly, is wrong with it, we can highlight some of the gaps in our current understanding of emotion. If you’ve seen the film and you already find the view of emotion portrayed by Inside Out silly, you are ahead of the game, but bear with us as we use it as an example for uncovering problematic beliefs about emotion.

Inside Out’s view of emotion takes as its starting premise the idea that all our emotions boil down to a few primary ones: in the film, they are joy, anger, fear, sadness, and disgust. These five emotions are animated as different characters, charming little homunculi that live in the brain of the little girl and fight with each other for control of her behavior and mental state. These homunculi sit at a control panel and watch the outside world on a screen. They react to the outside world, and in response they manipulate levers and switches that control the little girl’s behavior. They are also affected by memories that are symbolized by transparent marbles; moreover, a series of theme parks provide a mental landscape symbolizing different aspects of the girl’s personality. The five emotion characters fight over access to the memory marbles and struggle to keep the girl’s theme park attractions open for business.

From the film’s point of view, the five emotions are the dominant force controlling the little girl’s thoughts, memories, personality, and behavior; thinking, reasoning, and other cognitive activities are relegated to a sideshow. Truly, the little girl is an entirely emotional being. These details of the movie may not represent the way you think about emotions, but they characterize how many people do.

So what’s wrong with the film’s creative, engaging metaphor? Let’s unpack a few of the key ideas about emotions that Inside Out showcases, highlight the errors in their underlying assumptions, and try to articulate the scientiiic questions that they raise. Although science may not yet have the answers, the exercise will help us frame the issues.

Idea 1. There are a few primary emotions. The prevailing view, enshrined in many psychology textbooks, is that there is a small set of “primary” or “basic” emotions: as we already mentioned, these are joy, anger, fear, sadness, and disgust, according to Inside Out.

Different scientific emotion theories offer a big range in the number of basic emotions, anywhere from two to eleven! A second type of emotion is often called “social” or “moral” emotion and typically includes shame, embarrassment, pride, and others. These social emotions are thought to be more essentially tied to social communication than the basic emotions are. But although there are multiple schemes, many classic emotion theories tend to share the idea of a fixed, and relatively small, set of emotions that correspond to the words we have for emotions in English.

The idea of a small set of basic emotions was most notably introduced by the psychologist Paul Ekman, based largely on data from his studies of emotional facial expressions in humans. Ekman argued that facial expressions of basic emotions can be recognized across all human cultures (Ekman 1994); he studied them even among tribes in New Guinea. Ekman’s set of basic emotions includes happiness, surprise, fear, anger, disgust, and sadness (although contempt is also sometimes included).

The neurobiologist Jaak Panksepp similarly proposed a set of basic emotions, derived from his observations of animal behavior: seeking, rage, fear, lust, care, panic, and play (Panksepp 1998).

These emotion theories have much to recommend them and stimulated entire lines of important research. But they also suggest two questionable background assumptions (which Ekman and Panksepp themselves may or may not have held).

Questionable assumption 1: Emotions (at least the “primary” ones) are irreducible. A presumption that often accompanies the idea of a small set of primary emotions is that they are irreducible units. According to this assumption, emotions like “fear” or “anger” cannot be broken down into further components that are still emotional. The psychologist Lisa Feldman Barrett has argued strongly against this assumption, pointing out that it requires belief in some kind of mysterious “essences” of emotions, the belief that there is something irreducible that makes each primary emotion the emotion that it is (Feldman Barrett 2017a). This central assumption underlies the representation of each of the primary emotions in Inside Out as a distinct character.

“Joy” and “fear” do not merge with each other; they are each unique individuals. They have stable, fixed identities and functions, and do not share components (for example, in the movie’s metaphorical language, they do not share internal organs, limbs, and such).

Yet there is scant scientific evidence that “joy,” “fear,” or “anger” are irreducible and do not share component parts. Equally plausible is an alternative view in which each of these emotions is made up of a collection of components, or building blocks, some of which are shared by other emotions. Initial doubts such as these lead to the following set of scientific questions that can serve as a starting point for further investigation:

“Are different emotion states composed of features or dimensions that are shared, to variable extents, across multiple emotions? Are some emotions composed of, or based on, combinations of other more basic emotions?”

Questionable assumption 2: the primary emotions correspond to those for which we have names in English.

Related to questionable assumption 1 is the idea that words like anger,” and so forth in fact pick out scientifically principled categories of emotion. It is easy to see why this is unlikely to be the case. For one, we had these words for emotions long before there was any science of emotion, so why would one expect them to align well with scientific emotion categories? For another, different cultures have different words for emotions, and many of these turn out to be extraordinarily difficult to translate. In German, the word “Schadenfreude” denotes the emotion we feel when we feel happy about somebody else’s misfortune. Should that be a primary emotion, just because there’s a common word for it in German? There are many more such examples, entertainingly cataloged in Tiffany Watt Smith’s book, The Book of Human Emotions (Smith 2016). This poses some important scientific questions:

“How should we taxonomize emotions? How many emotions are there, and what names should we give to them? Are there different emotions in different cultures? Are there different emotions in different species? Can we use a word like ‘fear’ to refer to the same type of emotion state in a person, a dog, and a cat? How and when in evolution did emotions first arise, and how did they diversify?”

Given how little we yet know about these questions, and given that there are good reasons to believe our current emotion categories (“happiness,” “sadness,” and such) will need to be revised, we will say little in this book about specific emotions. We will refer to some emotions (notably “fear”) by way of example. And we will sketch how a future science of emotion might give us better categories or dimensions by which to taxonomize emotions. But this book is primarily about emotions in general, not about specific emotion categories.

Idea 2. Emotions are rigidly triggered by specific external stimuli. In the film Inside Out, all five emotion characters sit lazily around the control panel watching a screen that projects the outside world into the little girl’s mind, and are aroused into action only when an appropriate stimulus or circumstance appears. In the film, some stimuli do not activate a given emotion at all (for example, the “anger” character often sits dozing in his chair and does not react unless something maddening happens to the girl), while other stimuli activate multiple emotions. If the depiction from the film were accurate, we could easily figure out the emotion states of other people (and presumably other animals) by a straightforward list of rules that link specific stimuli to specific emotions in a characteristic and inflexible manner. This picture assumes that emotions are far simpler and more automatic than we in fact now know them to be. According to Idea 2, emotions would be just like reflexes. Some things will make you happy, others will make you sad, and some will trigger a specific mix of emotions, according to a set of rules.

Questionable assumption 3. Emotions are like reflexes. The movie gets it right that emotions are often triggered by stimuli in our surroundings. But what determines which emotions are triggered by which stimuli and under which circumstances? Why would seeing a dog trigger only a minimal emotional response in some people, and strong fear or happiness (emotional responses of opposite valence) in others? What accounts for the extraordinary flexibility with which many different stimuli, depending on the context and depending on the person, can elicit emotions? One can pose the following scientific questions:

“What determines whether an external stimulus will evoke an emotion or not, and what determines the kind of emotion evoked? What role do development and learning play in determining an organism’s response to a given stimulus? How does this process differ from simpler stimulus-response mappings, such as a reflex?”

Idea 3. Emotions control our behavior. The film portrays the emotion characters as controlling the little girl’s behavior by operating joysticks on the control panel. The little girl is but a hapless puppet, with emotions determining her behavior. This central visual metaphor encapsulates the title of the movie: our behavior is controlled, from the “inside out,” by our emotions. This feature is the counterpart to 2 above, with respect to the behavioral output rather than the stimulus input.

Questionable assumption 4. Specific emotions cause fixed and specific behaviors. Our subjective experience of emotion leads to the intuition that our emotions cause our behavior: I cry because I feel sad. Yet not all emotion theorists agree with this assumption. Indeed, the nineteenth-century American psychologist William James argued, counterintuitively, that emotions are a consequence, not a cause, of behavior: I feel afraid because I run from the bear, I do not run because I feel afraid (James 1884). Yet James already had doubts that just observing bodily reactions was sufficient to identify specific emotion categories. If it were true that specific emotions cause fixed and specific behaviors, we could infallibly deduce a person’s emotions just from watching their behavior. If so, then taken together with questionable assumption 3, we wouldn’t need emotions at all to explain behavior, there would simply be a set of rules linking stimuli to behavior.

That was the view that behaviorism advocated in the earlier twentieth century. One reason for the demise of behaviorism was that people realized that mappings from stimuli to behavior were far too complicated, and too dependent on context, inference, and learning, to be formulated as rules.

Emotions, in our view, are internal states that afford a flexible mapping to behavior, as we will detail throughout this book.

This leads to the following scientific questions: “Do internal emotion states cause behavior, or are they merely an accompaniment to behavior? Or might emotions actually be a consequence of behavior? What exactly are the causal links between stimuli, emotions, and behavior? How could we identify emotions in the absence of behavior? After all, we can be angry without punching somebody or showing any other easily detectable behavior.”

Idea 4. Different emotions are located in different, discrete brain regions. The beguiling picture of emotions as walking, talking cartoon characters in Inside Out is closely aligned with the belief that different emotions must correspond to anatomically distinct modules in the brain. Is there a place in the brain for fear, for example? This is a question that has received a lot of attention, including serious scientific investigation!

Questionable assumption 5. Specific emotions occur in specific brain structures. The era of functional neuroimaging with fMRI, as well as the study of patients with focal brain lesions, has led to the idea that emotions are generated in localized brain structures. For example, findings on the amygdala (a brain region studied in both of our laboratories to which we will return in some detail in later chapters) have led to the popular view that “fear is in the amygdala.” Yet more recent work clearly shows that this view cannot be right; indeed, that it does not even make sense, and that emotions depend on a much more distributed set of brain regions. This leads to the following scientific questions:

“How is the processing of emotion carried out across the brain? Are there identifiable functional neural substrates that organize or implement specific emotion states? Or is any given emotion state produced in such a highly distributed manner that it is impossible to assign a function in emotion to any brain region or neuronal cell population? Would it ever be possible to predict what emotion an individual is experiencing purely by examining activity in his/her brain ?”

As we will explain later, modern neuroscience approaches have given us a view of brain function that reconciles a dichotomy inherent in these questions. It will turn out that there are no macroscopic brain structures dedicated specifically to emotions (fear is not “in the amygdala”), but that there is specificity nonetheless. The specificity is at the level of circuits and cell populations, a level of organization that requires modern neuroscience tools to visualize. We spend some time in chapters 4 and 5 explaining these neuroscience tools, since their logic is required to reformulate the questions about emotion.

Idea 5. Emotions are conscious homunculi. The movie illustrates beautifully the idea that the brain is a machine with a little person (or persons) inside, who views the outside world, reacts to it, and then transfers those reactions to us. In other words, our subjective experience of emotion is created and embodied by the subjective experience of a miniature version of ourselves in our brain, a so-called homunculus. (As an aside, it is also interesting that this view, of little emotion homunculi within ourselves, to some extent relieves us of full responsibility for our emotional behavior, as when we say, “my anger made me do it.”)

Questionable assumption 6. Emotions are purely subjective experiences. How the brain creates an internal representation of the external world, and translates that representation into thoughts, feelings, and action, is a central open question in neuroscience. We know for sure that there is no little person sitting inside the brain looking at a screen and pulling on joysticks. The only things that have access to the patterns of neuronal activity in the brain are other neurons in the brain. How neurons “decode” the information represented by other groups of neurons and pass that information on to yet further groups of neurons so as to organize and express thoughts, emotions, and actions, is a deep mystery that we are far from solving.

This leads to the following scientific questions:

“How exactly do emotions arise in the brain? Can we separate the subjective, conscious experience of emotions from the existence of emotion states per se? Do emotions always have to be conscious? If so, how should we study them in animals, who may or may not be conscious and, in any case, cannot tell us how they feel?”

As we elaborate in the next section, we believe it is critical to distinguish between emotions as internal functional states, and conscious experiences of emotions (often called “feelings”). Emotions and feelings are not the same thing, although they are of course closely related. Most of this book is about emotions, not about feelings. We review some of the work on feelings near the end of this book.

The fallacy of the homunculus.

A homunculus, literally “little person,” refers to the idea that inside your brain there is a separate observer, something that can watch and interpret the activity of all the other brain regions in the same way that an external scientist might be able to record from your brain and make sense of its processing.

The idea of a homunculus has a long history in psychology and the philosophy of mind. It fundamentally arises from a confusion between different levels of description. On the one hand, we know that humans and animals have emotions (and many other mental states). On the other hand, we know that these mental states are produced by the brain. It is therefore tempting to conclude that emotions must literally be found in the brain if we only look with sufficiently microscopic tools.

But producing emotions is not the same as having an emotion. By analogy, there are many places in the brain that participate in producing vision, from the retina to the thalamus, to the cortex. But you cannot find vision in any one of these regions, nor does any of them have the experience of seeing. Or to take one more example: you can drive a car. So who or what does the driving? You can no more be driving by yourself (without a car) than a car can drive by itself (unless perhaps it’s a self-driving car). And you can’t take apart the car to look for where the “driving” really is located. Driving, vision, and emotion are system properties: they are not properties of any of the constituent parts, but all the parts work together to generate the property.

The most common aspect of emotion where a homunculus fallacy often arises is with respect to the conscious experience of emotion (or, for that matter, the conscious experience of anything else). Unlike the little characters that Inside Out put inside the mind of a girl, there are no homunculi in the brain for experiencing your emotions. There are brain systems that make you have a conscious experience of emotion. But the conscious experience of the emotion is a global property of a person (or animal), and the mechanisms whereby it is produced do not themselves have that property.

Toward a Science of Emotion

Without further reflection, it might seem that it should be straightforward to investigate emotions, and to discover how emotions work in the brain. But the assumptions and questions sketched in the first part of this chapter show us that a science of emotion faces some difficult challenges looming ahead. A science of emotion needs to examine most of our initial intuitions about emotions, sharpen vague questions so that they can be experimentally investigated, and confront both empirical and conceptual problems.

Let’s take a closer look at one of the major sources of conceptual confusion in emotion science. There is an assumption that different words, concepts, or types of data must refer to distinct things. We will argue instead that one and the same thing can be described with very different words and measured with very different types of data. Consider the thought provoking image on the next page (figure 1.1), produced by neuroscientist Rebecca Saxe at MIT and published in Smithsonian Magazine (December 2015).

Saxe got a mother and her infant child to go into an MRI scanner and obtained these images showing their brains. Saxe writes:

“While they lie there, the scanner builds up a picture of what’s inside their skulls. Often MRimages are made for physicians, to find a tumor or a blocked blood vessel. Scientists also make the images, to study brain function and development. In my lab, at MIT, we use MRI to watch blood flow through the brains of children; we read them stories and observe how their brain activity changes in reaction to the plot. By doing so, we’re investigating how children think about other people’s thoughts.

To some people, this image was a disturbing reminder of the fragility of human beings. Others were drawn to the way that the two figures, with their clothes and hair and faces invisible, became universal, and could be any human mother and child, at any time or place in history. Still others were simply captivated by how the baby’s brain is different from his mother’s; it’s smaller, smoother and darker, literally, because there’s less white matter. Here is a depiction of one of the hardest problems in neuroscience: How will changes in that specific little organ accomplish the unfolding of a whole human mind?

As for me, I saw a very old image made new. The Mother and Child is a powerful symbol of love and innocence, beauty and fertility. Although these maternal values, and the women who embody them, may be venerated, they are usually viewed in opposition to other values: inquiry and intellect, progress and power. But I am a neuroscientist, and I worked to create this image; and I am also the mother in it, curled up inside the tube with my infant son.”

As you were reading the above quote, you probably felt a tension between the colder, internal glimpse of two physical bodies shown in the MRI scan and your realization that these are two real people engaged in an affectionate emotional behavior. The MRI scan shows only tissue contrast, revealing bones, fluid, muscle, and brain. At the same time, we know that this is a mother and child, they are people, with thoughts and emotions. Both our everyday view of people and the view made possible with the MRI are of the same thing.

This is perhaps the most critical realization for a science of emotion (indeed, for a science of the mind in general). You can feel emotions. You can infer that other people are having emotions from their behavior. And you can image and record traces of emotions in the brain. These are very different types of data, very different sources of evidence about an emotion. And indeed, they need to be kept separate if one is studying them in their own right, as we shall see, feeling an emotion, having an emotion state, and attributing emotions to another person engage distinct processes in your brain. Nonetheless, your experience of your own emotion, your attribution of an emotion to another person you might see laughing or crying, and the neuroscientist’s investigation of an emotion from neurobiological data are not about three different things. They are ultimately all about one and the same thing, an emotion state. You can infer the emotion state in another person from observing their behavior, you can investigate the neural mechanisms of the emotion state through neuroscience experiments, and the emotion state may cause you yourself to have a conscious experience of the emotion. The behavioral observation, neurobiological measurement, and personal experience each can provide evidence for one and the same thing: an emotion state.

To flesh this out a little further, let’s view emotion from four different perspectives: the perspective of the behavioral biologist who might be carefully watching the behavior of an animal in the wild or the laboratory (or, for that matter, watching the behavior of a human being); the psychologist concerned with having people talk about and rate their conscious emotional experiences; the psychologist measuring emotional responses in the body, such as changes in heart rate or facial expression (common approaches in the psychology of emotion); and the neurobiologist who is studying (or even manipulating) the function of neurons in the brain (figure 1.2). All four perspectives can be perfectly objective and have an established and agreed upon methodology, but they are rather different data and often do not use the same language to describe the concepts and methods that relate their data to emotions. Yet all four investigate emotion.

Of those four perspectives, it is especially neuroscience that can show you things you could never get from your everyday knowledge of emotions. What kind of drug will work best for curing depression? Why do some people fear dogs whereas others love them? And, first and foremost, what are the underlying mechanisms that generate emotions, how do neurobiological events in the brain cause tears to run down our face when we are in a state of sadness, and how does this emotion state change much of the rest of our behavior, our attention, our memory, our decision-making?

FIGURE 1.2. Emotions can be inferred from severalkinds of data. We regularly attribute them to ourselves based on our subiective experience; psychologists might attribute them to us based on our verbal reports of that experience. We also attribute them to other people on the basis of their overt behavior; ethologists might do the same when they observe animal behavior. We might also use additional tools, such as measures of heart rate orblood pressure in the laboratory, to infer that a person is in an emotional state, even when they do not show it in overt behavior. Finally, as neurobiologists, we might look directly into the brain in order to draw conclusions about emotions. All of these measures are parts of a science of emotion.

These and many other questions like them are important for treating psychiatric illnesses, for understanding everyday human cognition and behavior, and for understanding the cognition and behavior of other animals. You cannot get at them by just thinking about your feelings. The aim of a neuroscience of emotion should be to make transparent how and why specific emotions have the features that they do: to explain them through their underlying mechanisms (this is a topic we discuss in detail in chapter 4).

But although this book will focus on neuroscience, our hope is that our broad and functionally based approach will contribute to an integrated science of emotion, a science that investigates emotions through behavior, psychology, and neurobiology. Such a science of emotion should also aim to investigate emotions across species, from worms and insects, to mollusks and fish, to birds and reptiles, to mice and dogs, to monkeys and to people. It would identify specific instances of emotions . . .



The Neuroscience of Emotion: A New Synthesis

by Ralph Adolphs and David J. Anderson

get it at


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s